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Abstract
We introduce a new discrete integrability criterion inspired from the recent
findings of Ablowitz and collaborators. This criterion is based on the study
of the growth of some characteristic of the solutions of a mapping, using
Nevanlinna theory. Since the practical implementation of the latter does not
always lead to a clear-cut answer, we complement the growth criterion by the
singularity confinement property. This combination turns out to be particularly
efficient. Its application allows us to recover the known forms of the discrete
Painlevé equations and to show that no new ones may exist within a given
parametrization.

PACS numbers: 0230G, 0230, 0545

1. Introduction

The explosive growth of interest in integrable discrete systems over the past decade has
led to the derivation of new and interesting, integrable mappings but also to the proposal
of several integrability detectors. The principle on which the latter are based, is simple in
theory. One must first identify some property which is characteristic of all integrable systems
(a task already highly nontrivial). Then one must check whether this property is exclusive to
integrable systems (a still more delicate task). In the case of discrete systems the two properties
which have served as a guide in the quest for integrability detectors are singularities [1,2] and
growth [3]. The importance of singularities in integrability can be understood in analogy
to the continuous case [4]. In this spirit we have proposed the singularity confinement [1]
property based on the observation that a singularity spontaneously appearing in an integrable
mapping disappeared after some iterations. The idea that growth may play a role in the
integrability of discrete systems goes back to Arnold [5] and Veselov [6]. The latter has
stated epigrammatically: ‘integrability has an essential correlation with the weak growth of
certain characteristics’. Viallet and collaborators [7, 8] have elaborated further Arnold’s idea
of complexity and proposed an efficient discrete integrability detector in the form of what they
dubbed algebraic entropy.

1 Permanent address: Department of Mathematics, Avvaiyar Government College for Women, Karaikal, India.
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A very interesting direction in the detection of discrete integrability was initiated by
Ablowitz and collaborators (AHH) [9]. Their starting point was the formal identity of discrete
systems and delay equations [10]. As was shown by Yanagihara [11], such equations possess
nontrivial solutions which are meromorphic in the complex variable. Once one adopts the
latter viewpoint one can consider discrete equations as defined in the complex plane of the
independent variable and deploy all the arsenal of complex analysis. The crucial remark of
AHH was that at the continuous limit, when the delay equation goes over to a differential one,
the singularities at finite distance of the latter can be associated to the behaviour of the solutions
of the discrete system at infinity. This led to the introduction of methods for the study of the
behaviour near ∞ of the solutions of a given mapping and the natural framework for this is
Nevanlinna theory [12]. This theory provides tools for the study of the value distribution of
meromorphic functions. In particular it introduces the notion of order. The latter is infinite
for very-fast-growing functions, while a finite order indicates a moderate growth. It would be
reasonable to surmise that an infinite order is an indication of nonintegrability.

Given a discrete system, it is often difficult to obtain a clear-cut answer concerning the
order of its solutions. Usually one starts by imposing as many constraints as one can obtain
through the implementation of the Nevanlinna approach and then proceed in a different way.
At this point various strategies can be adopted. The one of Ablowitz et al consists of requiring
that (the series expansions of) the solutions be free from digamma functions. In this paper we
shall propose a different approach.

Our method relies on Nevanlinna theory for the estimation of the growth of the solutions
of a given discrete system. However, since the order may depend on the precise coefficients
of the equation and their dependence on the independent variable, throughout this paper our
starting point is autonomous. This assumption greatly simplifies the approach and leads to
more precise results. Once the largest possible number of constraints is obtained through this
method we proceed to the second step by implementing the singularity confinement criterion.
Our assumption is that once the mappings with very-fast-growing solutions are eliminated,
singularity confinement is sufficient for integrability. At this second step we are again dealing
with autonomous systems. The third and final step consists of deautonomization, again using
the singularity confinement criterion. We believe that this three-tiered approach is easier to
implement than that of Ablowitz et al and has a wider range of applicability.

In this paper, after a brief recall of Nevanlinna theory, we shall illustrate our method by
applying it to the family of mappings introduced in [13] (known as QRT mappings) which,
through deautonomization, lead to discrete Painlevé equations [14]. We shall recover the
already known forms of the discrete Painlevé equations but we shall also show that no new
integrable forms may exist besides the already known ones.

2. A brief recall of Nevanlinna theory

As we stated in the introduction, we expect the integrability of a mapping to be conditioned
by the behaviour of its solutions when the (complex) independent variable goes to infinity.
The main tool for the study of the value distribution of entire and meromorphic functions is
the Nevanlinna characteristic (and various quantities related to the latter). The Nevanlinna
characteristic of a function f , denoted by T (r; f )measures the ‘affinity’ of f for the value ∞.
It is usually represented as the sum of two terms: the frequency of poles and the contribution
from the arcs |z| = r where |f (z)| is large. From the characteristic one can define the
order of a meromorphic function: σ = lim supr→∞ log T (r; f )/ log r . When f is rational,
T (r; f ) ∝ log r and σ = 0. A fast-growing function such as eez leads to T ∝ er and thus
σ = ∞.
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An explicit expression of the Nevanlinna characteristic can be given in terms of the
counting and proximity functions related to the two contributions we mentioned above. We
have

T (r; f ) = N(r; f ) +m(r; f ) (2.1)

where

N(r; f ) =
∫ r

0

n(t; f )− n(0; f )
t

dt + n(0; f ) log r (2.2)

is the pole-counting contribution where n(r; f ) is the number of poles of f , including
multiplicities, for |z| � r . The proximity function m(r; f ) is given by

m(r; f ) = 1

2π

∫ 2π

0
log+ |f (reiθ )| dθ (2.3)

where log+ g = max(0, log g). We must point out that the affinity of f for ∞, as measured
by T , is the same as its affinity for 0 or any finite value a, up to terms which may be of O
(log r) when r is small, but which, when r is sufficiently large (depending on the function f
and the value a) remain bounded. In what follows, we shall introduce the symbols �, 	 and ≺
which denote equality, inequality and strict inequality respectively up to a function of r which
remains bounded when r → ∞. The two basic relations which reproduce the statement on
the affinity of f for ∞, 0 or a are

T (r; 1/f ) � T (r; f ) (2.4)

T (r; f − a) � T (r; f ). (2.5)

Using those two identities, we can easily prove that the characteristic function of a homographic
transformation of f (with constant coefficients) is equal to T (r; f ) up to a bounded quantity.
It is straightforward to prove that

T (r; f n) � |n|T (r; f ) (2.6)

and from a theorem due to Valiron [15] we have

T

(
r; P(f )
Q(f )

)
� sup(p, q)T (r; f ) (2.7)

whereP andQ are polynomials inf with constant coefficients, of degreesp and q respectively,
provided the rational expression P/Q is irreducible.

Let us give also some useful classical inequalities

T (r; fg) 	 T (r; f ) + T (r; g) (2.8)

T (r; f + g) 	 T (r; f ) + T (r; g). (2.9)

Another inequality, which was first given in [16], is

T (r; fg + gh + hf ) 	 T (r; f ) + T (r; g) + T (r;h). (2.10)

The proof of this inequality is easy, using the fact that T (r; f ) is the sum of the pole
counting and the proximity contributions. For the former we remark that the density of
poles of fg + gh + hf cannot be higher than the sum of those of f , g and h. As a
consequence, for the part under the integral in (2.2) we have the desired inequality. The
n(0, f ) log r term, for r < 1, may introduce a contribution going against the inequality
we wish to prove, but whenever r > 1, the contribution is in the right direction and we
thus have indeed N(r; fg + gh + hf ) 	 N(r; f ) + N(r; g) + N(r;h). For the proximity
function, we start by remarking that |fg + gh + hf | < 3 sup(|fg|, |gh|, |hf |). Taking the
log+ of both members, we can strengthen the inequality by adding to the right-hand side
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(rhs) the log+ of the one of the |f |, |g|, |h| that does not enter in each term of the sup.
We have thus: log+ |fg + gh + hf | < log 3 + log+ |f | + log+ |g| + log+ |h| which leads to
m(r; fg + gh + hf ) 	 m(r; f ) +m(r; g) +m(r;h). Adding the two inequalities for N andm
we find (2.10). It can be generalized to

T

(
r;

∑
J⊆I

αJ

( ∏
j∈J
fj

))
	

∑
i∈I
T (r; fi) (2.11)

for constant αJ values.
One last property of the Nevanlinna characteristic was obtained by Ablowitz et al [9]. In

our notation it reads

T (r; f (z± 1)) 	 (1 + ε)T (r + 1; f (z)). (2.12)

This relation (which is valid for r large enough for any given ε) makes it possible to have
access to the characteristic, and thus the order, of the solution of some difference equations.

3. A practical integrability criterion for discrete systems

The application of the Nevanlinna-based approach will be used here in order to examine
the integrability of a selected family of mappings and at the same time propose a novel
integrability criterion. The first necessary condition for a noninfinite order, obtained when
evaluating Nevanlinna characteristics, is usually insufficient for the order to be finite. Here we
will supplement these estimations by the application of the singularity confinement criterion.
The resulting combination, as we shall show, is a powerful heuristic tool for the detection of
integrability in discrete systems.

The first step, given a mapping, is to use Nevanlinna characteristic techniques in order to
estimate the growth rate of the solutions. Since for nonautonomous equations this rate depends
on the growth rate of the coefficients of the equation we opt for a simple approach: at this
first step we consider only autonomous mappings, i.e. mappings the coefficients of which are
constants.

The discrete equations we shall examine here are three-point mappings of the general form

A(xn, xn−1, xn+1) = B(xn) (3.1)

where, in principle,A is polynomial andB is rational. Moreover, in this case we shall consider
A to be linear separately in xn±1. Following the approach of AHH we consider equation (3.1)
as a delay equation in the complex domain and evaluate the Nevanlinna characteristic of both
members of the equality using (2.12) and (2.7). We find

u(1 + ε)T (r + 1; x) + vT (r; x) � wT (r; x) (3.2)

(with u = 2 if A is linear in xn±1) for appropriate values of v and w. From (3.2) we have

T (r + 1; x) � w − v

u(1 + ε)
T (r; x). (3.3)

Now if w > u + v, for large enough values of r one can always choose ε to be small enough
so that λ ≡ w − v/u(1 + ε) becomes strictly greater than unity. The precise meaning of (3.3)
is that for large enough values of r we have

T (r + 1; x) � λT (r; x)− C (3.4)

for someC independent of r . The case whereC is negative is trivial: T (r +k; x) � λkT (r; x).
For positive values of C we have

T (r + 1; x)− C

λ− 1
� λ

(
T (r; x)− C

λ− 1

)
. (3.5)
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Thus, whenever T (r; x) is an unbounded-growing function of r (i.e. T � 0), then where r is
large enough the rhs of this inequality becomes strictly positive and iterating (3.5) we see that
T (r + k; x) diverges at least as fast as λk , thus log T (r; x) > r log λ and the order σ of x is
infinite. Thus, according to the AHH hypothesis the mapping cannot be integrable. The only
way out is if T (r; x) is a constant which means that x is itself a constant, since the slowest
possible growth of the Nevanlinna characteristic for a nonconstant meromorphic function is
T (r; f ) � log r , for f a homographic function of z. Giving that the mapping is rational, there
can only be a finite number of constant solutions. We could in principle have had an infinite
number of constant solutions if the identity A(xn, xn, xn) ≡ B(xn) were true. However this
would implyw � u+ v. Thus whenw > u+ v in (3.2) the only possible finite-order solutions
are (a finite number of) constant solutions, all the remaining ones having σ = ∞.

The advantage of working with autonomous mappings lies in the fact that we can precisely
control the corrective terms in the inequalities for T . Had we worked with nonautonomous
systems, we would have had unbounded corrective terms. For instance if the coefficients
depend rationally on z, there would be corrective terms of order O(log r) and we would have
been unable to exclude (finite-order) rational solutions. Though one could suspect that the
generic solution is not rational, one could not easily prove this fact in the nonautonomous case.
However, in our approach we consider nonautonomous equations as obtained from autonomous
ones through a deautonomization procedure. (By deautonomization we mean that we allow
the coefficients of the mapping to be functions of the independent discrete variable.) This
procedure will never transform a σ = ∞ solution into a finite σ one. So the generic solution
will have σ = ∞ whenever w > u + v in (3.2) even in the nonautonomous case. The rational
solutions that we cannot exclude can only come, through the deautonomization procedure,
from the finite- (in effect, zero-)order constant solutions, of which there is a finite number.

As we just saw, this first step puts severe constraints on the discrete equations at hand.
However, usually, these constraints are not restrictive enough so as to fix completely the form
of the mapping, hence the necessity of the second step. (At this point our approach diverges
from that of AHH.) Once the constraints of the first step are implemented, we pursue, using
singularity confinement, in order to constrain further our discrete equation. The application of
the singularity confinement criterion is based on the assumption that for an integrable mapping
all singularities spontaneously appearing at some step do disappear after some iterations. Thus
all autonomous equations that do not satisfy confinement are rejected at this second step.

The third step consists of the deautonomization of the system using once again the
confinement criterion. We thus obtain a mapping which (hopefully) satisfies the Nevanlinna
criterion for low growth of the solutions as well as the singularity confinement. The major
difficulty lies in the fact that the practical evaluation of the Nevanlinna characteristic gives a
clear-cut answer as to mappings the solutions of which must be (generically) of infinite order,
but this does not mean that all the remaining ones have their generic solution of finite order.
Particular care is needed in the application of this criterion, lest one proclaims of finite-order
systems which have in fact infinite-order solutions.

In what follows, we are going to examine systems belonging to the family of discrete
Painlevé equations (d-Ps) [17]. Our starting point will be functional forms related to the
various members of the family of ‘standard’ d-Ps.

Following the three-tiered approach we sketched earlier, we start with autonomous
systems. Since in every case examined, the application of the Nevanlinna criterion combined
to that of singularity confinement leads to precisely the QRT [13] forms, we shall not proceed
to the third step, namely deautonomization. As a matter of fact the deautonomization of the
QRT mappings, associated with the standard family of d-Ps was given in full detail in [18].

We start with the equations of the d-PI/II family. These have been examined in detail by
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AHH, but we present here the results for completeness sake. They also give us the opportunity
to present the differences between our arguments and the ones of AHH. The starting point is
the autonomous equation

xn+1 + xn−1 = P(xn)

Q(xn)
. (3.6)

Whenever the conditionw > u+v, obtained in section 2, is satisfied, we know that the generic
solution will have infinite order, since only a finite number of constant solutions can have finite
(in fact, zero) order. For equation (3.6) u = 2, v = 0 and w is the maximum of the degrees of
P andQ. Thusw can be at most 2 for the order of the generic solution not to be infinite. There
is a subtle difference in our reasoning compared to that of AHH. The latter authors conclude
that, if P and Q depend rationally on n, if w > 2 and if the solution is not rational, then the
order is infinite, but they cannot exclude the possibility that for some choice of P , Q with
w � 3 all solutions may be rational. For us, using constant P and Q we can conclude that
if w > 3 the generic solution has σ = ∞, without any other assumption on its rationality.
The only solutions with finite order are constants and there exists a finite number of them.
Then upon deautonomization, the generic σ = ∞ solution cannot recover a finite order, while
some very special zero-order rational solutions may arise from the constant solutions of the
autonomous case.

Let us examine all mappings with w � 2. This will help us illustrate what we mean by
singularity confinement and deautonomization. We start by rewriting (3.6) in the case of a
quadratic numerator and denominator as

xn+1 + xn−1 = − ηx2
n + εxn + ζ

αx2
n + βxn + γ

(3.7)

where we assume that α, β are not both zero. In order to implement singularity confinement
we distinguish the two cases α �= 0 and α = 0. Let us start with the latter and take β = 1. By
translating x we obtain the mapping with γ = 0 i.e. with just xn in the denominator. Clearly if,
due to the initial conditions chosen, xn = 0 for some n, then xn+1 = ∞. This singularity will
propagate indefinitely unless we have η = 1 i.e. η = β, or 0. Thus the principle of singularity
confinement constrains us to these equalities if we wish to detect the integrability candidates.
In the case α �= 0 we can always take α = 1 and, by translation, put β = 0. Two cases must
be distinguished: γ = 0 and γ �= 0, in which case we can always scale the variables so that
γ = −1. Again a singularity appears whenever xn = 0 in the former case or xn = ±1 in
the latter. The condition for this singularity not to propagate ad infinitum is η = β = 0. (As
a matter of fact the essential constraint is η = β. We can always through a translation go
back to β �= 0, but in this case the translation preserves the equality η = β.) Thus the only
instances of (3.7) which have confined singularities are precisely the ones where the mapping
belongs to the QRT family η = β or α = η = 0. (The full details of this analysis can be found
in [1].) The deautonomization of the mappings obtained at this stage consists of assuming
that the coefficients are functions of the independent variable n. We ask then what are the
constraints on these functions so that the singularity pattern will be exactly the same as in the
autonomous case. This results in the following cases, which while nonautonomous do satisfy
the singularity confinement criterion, with zn = δn + z0 i.e. linear in the independent variable:

(i) α = 1, γ = −1, η = β = 0, ε = zn, ζ = constant,
(ii) α = 1, γ = 0, η = β = 0, ε = zn, ζ = constant,

(iii) α = 0, γ = 0, η = β = 1, ε = constant, ζ = zn,

(iv) α = 0, γ = 0, η = 0, β = 1, ε = constant, ζ = zn.
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Case (i) corresponds to the well known form of d-PII while the remaining three are
alternate forms of d-PI. In what follows we shall not present the details concerning the
application of singularity confinement for constraining the parameters of the mapping and
their deautonomization. The results for the former can be found essentially in [14] while for
the latter the full analysis was presented in [18].

One notable exception to integrability for (3.7) is the polynomial mapping

xn+1 + xn−1 = P(xn) (3.8)

where P is a quadratic polynomial, i.e. α = β = 0. The latter was shown to be nonintegrable
by AHH and, by a slightly different approach, by two of the present authors in [16].

The next mapping we shall examine is related to the q-PIII family

xn+1xn−1 = P(xn)

Q(xn)
. (3.9)

This was one of the mappings examined by Ablowitz et al but the fact that they considered
coefficients linear in n does not allow one to directly apply their conclusions to q-PIII, where
the coefficients are exponential in n. Still their main result stands: all the solutions of (3.9) are
of infinite order (except a finite number of constant solutions) if the maximum of the degrees
of P,Q exceeds 2. The main ingredient in the proof of this result is the inequality (2.8)
T (r; xn+1xn−1) 	 T (r; xn+1) + T (r; xn−1), thus we have again (3.2) with u = 2 and v = 0.
The general form of (3.9) with quadratic P,Q is

xn+1xn−1 = ηx2
n + ζxn + µ

αx2
n + βxn + γ

. (3.10)

Again, the application of singularity confinement to (3.10) results in the QRT constraint η = γ

or η = α = 0. The deautonomization of this form, presented in [18], leads to the q-PIII

equation as well as mappings which are q-discrete forms of PII and PI.
Next we turn to the d-PIV family

(xn+1 + xn)(xn + xn−1) = P(xn)

Q(xn)
. (3.11)

First, we apply naı̈vely (2.8) and (2.9), which gives us, with the notations of (3.2), u = 2, v = 2
and thus for w > 4 we have xn of infinite order. Thus the only acceptable P,Q can be quartic
at the maximum. However, we can produce a more refined estimate using the inequality (2.10).
To do this we rewrite (3.11) as

xn+1xn−1 + xnxn+1 + xnxn−1 = P(xn)− x2
nQ(xn)

Q(xn)
. (3.12)

(Note that since P/Q is irreducible, the rhs of (3.12) is equally irreducible.) Using (2.10) we
find u = 2, v = 1 and so we havew � 3. Thus for integrability candidates we can have for the
degree ofQ a maximum of q � 3 and for the degree of P − x2Q also a maximum at 3. From
what we saw above the degree of P is p � 4 and if q = 3, then the degree of the numerator
would be 5 which is forbidden. Thus we can have at most q = 2 and P = x2Q + R where
R is a polynomial of at most a cubic in x. The well known discrete PIV falls precisely in this
class. As a matter of fact the precise application of singularity confinement to the mapping

(xn+1 + xn)(xn + xn−1) = αx4
n + ηx3

n + κx2
n + θxn + µ

αx2
n + βxn + γ

(3.13)

results in the QRT form: η = θ = 0. Further the deautonomization of the mapping yields
d-PIV. On the other hand if q = 1 then we have p � 3. The mapping then has the form

(xn+1 + xn)(xn + xn−1) = ηx3
n + κx2

n + θxn + µ

βxn + γ
. (3.14)
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Singularity confinement leads to two distinct subcases. One corresponds to α = 0 in (3.13)
while the other leads to the constraints η = β and βµ = κθ and corresponds to the case where
the rhs of (3.13) is not irreducible. In the case q = 0 we have three possibilities. Two come
from η = β = 0 in (3.14), which entails either κ = 0 or θ = 0, the latter case being equivalent
to α = β = 0 in (3.13). A third case is formally obtained by η = β = 0 and κ = γ in (3.14)
and corresponds to the case where the rhs of (3.14) is not irreducible. So to summarize, the
rhs, if polynomial, must be either axn + b, ax2

n + b or x2
n + axn + b. Note that in all three cases,

p � 2 rather thanp = 3. This limit onpwhen q = 0 can in fact be proven by Nevanlinna-type
methods. The deautonomizations of these mappings were presented in detail in [18].

The next mapping we are going to examine is the q-PV family

(xn+1xn − 1)(xnxn−1 − 1) = P(xn)

Q(xn)
. (3.15)

The straightforward application of (2.8) and (2.9) gives u = 2, v = 2. Thus, just as in the case
of d-PIV, for w > 4 we have a generic xn of infinite order and the only acceptable P and Q
are quartic. However, we can rewrite (3.15) as

xn+1xn−1 − xn+1

xn
− xn−1

xn
= P(xn)−Q(xn)

x2
nQ(xn)

. (3.16)

Using (2.10) we find u = 2, v = 1 and thus we must have w � 3. However, this does not
mean that the degree of P −Q and x2Q must be less or equal to 3 because although P/Q is
irreducible, P − Q may have one or more x factors. We are thus led to the examination of
each particular case. If q � 1 then no x factorization is necessary and in this case we have
p � 3. If q � 2 and one x factorizes, we have P = Q+xR whereR is cubic at maximum and
p � 4. (Note that even if q � 1, p = 4 is allowed because R may still be cubic.) Finally if
q � 3, a factor x2 is necessary and P = Q + x2S, with S at most quadratic so that p � 4. For
q � 2, this case is a subcase of the previous one with R = xS. But for q = 3, this case can
be shown to have its generic solution of infinite order. Indeed one can show that, though the
usual method gives (3.2) with u = 2, v = 1, a more refined calculation leads in this particular
case to a situation where u = 2, but the ‘effective’ v is zero, which combined with w = 3
leads to a growth of T (r) faster than λr with λ = 3/(2 + 2ε) for ε arbitrarily small when r
is large enough. First, let us remark that x does not divide Q (otherwise x would also divide
P = Q + x2S, but P/Q has been assumed to be irreducible). Thus Q has three roots none
of which is zero. Since the degree of S is less than that of Q, the affinity of the rhs of (3.16),
S/Q, for infinity is entirely due to the affinity of x for each of the three roots ofQ i.e. 3T (r; x)
(up to a bounded correction). In the lhs xn+1, xn−1 do contribute to the affinity for infinity as
usually 2(1 + ε)T (r + 1; x) i.e. u = 2. However, since none of the roots ofQ is zero, the 1/xn
terms do not contribute to the affinity for infinity when the rhs is near infinity. Thus it is as if
v were zero and only the contribution from xn+1, xn−1 balances the contribution 3T (r; x) of
the rhs.

The case of a quadratic Q corresponds to q-PV. The general form of the mapping is

(xn+1xn − 1)(xnxn−1 − 1) = ηx4
n + θx3

n + µx2
n + κxn + γ

αx2
n + βxn + γ

. (3.17)

The application of singularity confinement leads to the constraints η = γ , θ = κ , which
reduce the mapping to its QRT form. The deautonomization of the latter was presented in
detail in [18]. In the case of linear Q we have a priori

(xn+1xn − 1)(xnxn−1 − 1) = ηx4
n + θx3

n + µx2
n + κxn + λ

βxn + γ
. (3.18)
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The constraints resulting from singularity confinement lead to three cases. Either η = λ = γ

and θ = κ , which comes from taking α = 0 in (3.17), or η = 0, λ = γ and
θ(θ − κ) − γ (γ − µ) = 0, which comes from a situation where (3.17) is not irreducible
and a nontrivial factor drops out, and finally η = θ = 0, λ = µ. The latter comes from a
trivial simplification by x in (3.17) where (η =)γ = 0, so λ = µ is a consequence of θ = κ

in (3.17) and we do not require λ = γ in that case.
Finally we will just list the possible forms of the rhs, when q = 0, once the singularity

confinement is implemented. Each form comes from (3.17) either by some special values
(α = β = 0, for instance), and/or by trivial (by x) and/or nontrivial simplifications. The
possible forms are x4 + ax3 + bx2 + ax + 1, ax3 + bx2 + cx + 1 with a2 − ac + b − 1 = 0,
ax2 + bx + a, ax2 + bx + 1, ax + b where any number of the coefficients a, b, c may vanish.

For the remaining discrete Painlevé equations a direct application of the Nevanlinna
method is inconvenient. Thus we shall follow a slightly different approach and instead of
a single discrete equation we consider the system

xn+1 ∗ xn = P(yn)

Q(yn)
(3.19a)

yn 5 yn−1 = R(xn)

S(xn)
(3.19b)

where ∗ and 5 stand for either of the operators + or × (and the use of two different symbols
stresses the fact that they can be chosen independently). In order to estimate the order of the
solutions of (3.19) we calculate the characteristic of both members of (3.19a) and (3.19b). We
have

T (r; xn+1) + T (r; xn) � wT (r; yn) (3.20a)

T (r; yn) + T (r; yn−1) � ωT (r; xn) (3.20b)

where w,ω are the maxima of the degrees of P,Q and R, S, respectively. Next we
compute (3.20a) once downshifted, i.e. at the point (n − 1), and eliminating T (r; y) we
find

T (r; xn+1) + 2T (r; xn) + T (r; xn−1) � wωT (r; xn). (3.21)

Using (2.12) we have

2(1 + ε)T (r + 1; xn) � (wω − 2)T (r; xn) (3.22)

which means that (apart from a finite number of constant solutions) the generic x is of infinite
order if wω > 4. Given this constraint integrability candidates may only have wω � 4. We
must thus examine the cases of w = ω = 2 and w = 1, ω � 4 (or the equivalent one ω = 1,
w � 4).

The case w = ω = 2 leads (after the singularity confinement constraints have been
implemented) to well known integrable equations. In all cases, we present only the generic
equation in which we assume that both w and ω are exactly 2. The cases where one (or both)
rhss are homographic are treated later. Still, various subcases do exist, coming from special
values of the parameters. The purely multiplicative case is

xn+1xn = κy2
n + λyn + µ

αy2
n + βyn + γ

ynyn−1 = γ x2
n + ζxn + µ

αx2
n + δxn + κ

. (3.23)

When deautonomized using singularity confinement, this becomes the ‘asymmetric’ q-PIII,
discrete PVI, obtained by Jimbo and Sakai [19] or some degenerate form thereof.

The purely additive form is the ‘asymmetric’ d-PII, discrete PIII, we have studied in [20]

xn+1 + xn = δy2
n + εyn + ζ

αy2
n + βyn + γ

yn + yn−1 = βx2
n + εxn + λ

αx2
n + δxn + κ

. (3.24)
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Finally the mixed case is a discrete PV [21]

xn+1 + xn = δy2
n + εyn + ζ

αy2
n + βyn + γ

ynyn−1 = γ x2
n + ζxn + µ

αx2
n + δxn + κ

. (3.25)

Let us now turn to the case where ω � 4, w = 1. The latter means that the rhs of (3.19a) is
just homographic in y. Solving for y we obtain yn = H(xn+1 ∗ xn) where H is homographic
in its argument. We obtain thus the following mapping:

H(xn+1 ∗ xn) 5 H(xn ∗ xn−1) = R(xn)

S(xn)
(3.26)

where the degrees ofR and S are not larger than 4. Four cases must be distinguished depending
on the choices of ∗ and 5. When ∗ stands for +, the resulting equation is the autonomous form
of a discrete PV (once the singularity confinement constraints have been implemented in the
most generic case, where R/S is irreducible with both R and S quartic). When ∗ stands for ×
the final equation is the autonomous form of a q-PVI. If 5 is taken as ×, the two forms are the
standard ones as obtained in [22]:

(xn+1 + xn − 2ζ )

(xn+1 + xn)

(xn−1 + xn − 2ζ )

(xn−1 + xn)
= α(xn − ζ )4 + β(xn − ζ )2 + γ

αx4
n + δx2

n + ε
(3.27)

(xn+1xn − ζ 2)

(xn+1xn − 1)

(xn−1xn − ζ 2)

(xn−1xn − 1)
= α(x4

n + ζ 4) + βxn(x2
n + ζ 2) + γ x2

n

α(x4
n + 1)δxn(x2

n + 1) + εx2
n

. (3.28)

If 5 is the operator + no new equations result. It is straightforward to show that by adding
the adequate constant to both sides of the equation, the resulting forms are just the ones
obtained in (3.27), (3.28). At this stage, ζ is a constant, like all the other parameters. The
deautonomization was presented in [22]. We will not comment on the hosts of special forms
R and S can assume through special values of the coefficients and various factorizations.

4. Conclusion

In this paper we have introduced a novel integrability criterion for discrete systems. It combines
the two features which are presumably important for integrability: growth and singularities.
The growth part is taken care of by the study of the Nevanlinna characteristic. Our approach
consists of focusing on autonomous systems for the study of the behaviour at infinity of the
solution. The rationale behind this approach is the following. We believe that for autonomous
systems, for which the growth of solutions is not marred by too-fast growing coefficients,
integrability is to be associated to finite order. Once systems with infinite-order solutions
are rejected at this step one can proceed safely to deautonomization through the singularity
confinement criterion. In a sense the finite-order requirement was the ingredient which was
missing in order to turn singularity confinement into a powerful integrability detector.

The application of this method, which was dubbed the three-tiered approach, was carried
out in detail for mappings of the QRT family, which include the discrete Ps. Our choice of these
systems was dictated by the fact that they are among the most well studied. Moreover for a large
number of d-Ps integrability is well established through the existence of a Lax pair. For the
remaining equations, although this is certainly not a proof, there exists an independent, strong
indication of integrability obtained through algebraic entropy–low-growth techniques [23].
For most of the discrete Painlevé equations we have presented a geometrical description [24]
(based on affine Weyl groups) which makes possible the construction of their solutions starting
from those of nonautonomous Hirota–Miwa equations, which constitutes (at least in the eyes
of the present authors) a further indication of integrability.
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This paper strengthens further the results obtained on the integrability of discrete Painlevé
equations. Moreover it shows that, at least within the QRT parametrization, the known d-Ps
are the only ones one can expect to be integrable. (A caveat is unavoidable here concerning
the special limits and degenerate forms of equations belonging to the family of d-PV and q-PVI

which have not yet been exhaustively studied.) This conclusion should not be interpreted as
indicating that studies on the possible forms of d-Ps have been exhausted. There remains a
whole terra incognita of two variable discrete systems which cannot be written as (3.19) [25]
which have never been the object of a systematic investigation. Moreover the domain of higher
d-Ps has barely been touched upon. We expect the methods developed in this paper to provide
valuable tools for these explorations.
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